Averaged Probabilistic Relational Models

نویسنده

  • Daniel Wright
چکیده

Most real-world data is stored in relational form. In contrast, most statistical learning methods work with “flat” data representations, forcing us to convert our data into a form that loses much of the relational structure. The recently introduced framework of Probabilistic Relational Models (PRMs) allows us to represent probabilistic models over multiple entities that utilize the relations between them. However, for extremely large domains it may be impossible to represent every object and every relation in the domain explicitly. We propose representing the domain as an Averaged PRM using only “schemalevel” statistical information about the objects and relations, and present an approximation algorithm for reasoning about the domain with only this information. We present experimental results showing that interesting inferences can be made about extremely large domains, with a running time that does not depend on the number of objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Connections between Relational and XML Probabilistic Data Models

A number of uncertain data models have been proposed, based on the notion of compact representations of probability distributions over possible worlds. In probabilistic relational models, tuples are annotated with probabilities or formulae over Boolean random variables. In probabilistic XML models, XML trees are augmented with nodes that specify probability distributions over their children. Bo...

متن کامل

Probabilistic Models for Relational Data

We introduce a graphical language for relational data called the probabilistic entityrelationship (PER) model. The model is an extension of the entity-relationship model, a common model for the abstract representation of database structure. We concentrate on the directed version of this model—the directed acyclic probabilistic entity-relationship (DAPER) model. The DAPER model is closely relate...

متن کامل

5 Probabilistic Relational Models

Probabilistic relational models (PRMs) are a rich representation language for structured statistical models. They combine a frame-based logical representation with probabilistic semantics based on directed graphical models (Bayesian networks). This chapter gives an introduction to probabilistic relational models, describing semantics for attribute uncertainty, structural uncertainty, and class ...

متن کامل

Elimination Ordering in Lifted First-Order Probabilistic Inference

Various representations and inference methods have been proposed for lifted probabilistic inference in relational models. Many of these methods choose an order to eliminate (or branch on) the parameterized random variables. Similar to such methods for non-relational probabilistic inference, the order of elimination has a significant role in the performance of the algorithms. Since finding the b...

متن کامل

Multi-Relational Data Mining using Probabilistic Models Research Summary

We are often faced with the challenge of mining data represented in relational form. Unfortunately, most statistical learning methods work only with “flat” data representations. Thus, to apply these methods, we are forced to convert the data into a flat form, thereby not only losing its compact representation and structure but also potentially introducing statistical skew. These drawbacks sever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002